Startseite » Werkstoffe »

KIT: Maschinelles Lernen beschleunigt Materialsimulationen

Werkstoffwissenschaft
KIT: Maschinelles Lernen beschleunigt Materialsimulationen

Neuronale_Netze_ermöglichen_präzise_Materialsimulationen
Neuronale Netze ermöglichen präzise Materialsimulationen – bis hinunter auf die Ebene einzelner Atome. Bild: KIT/Pascal Friederich
Anzeige

Erforschung, Entwicklung und Herstellung neuer Materialien hängen entscheidend von schnellen und zugleich genauen Simulationsmethoden ab. Maschinelles Lernen, bei dem Künstliche Intelligenz (KI) selbstständig neues Wissen erwirbt und anwendet, wird es künftig ermöglichen, komplexe Materialsysteme rein virtuell zu entwickeln. Wie das funktioniert und welche Anwendungen davon profitieren, erklärt ein Forscher des Karlsruher Instituts für Technologie (KIT) gemeinsam mit Kollegen aus Göttingen und Toronto in einem Artikel in der Zeitschrift Nature Materials.

Digitalisierung und Virtualisierung haben immer mehr Bedeutung

Digitalisierung und Virtualisierung gewinnen in vielen verschiedenen wissenschaftlichen Disziplinen immer mehr an Bedeutung. Dies gilt auch für die Materialwissenschaft: Erforschung, Entwicklung und Herstellung neuer Materialien hängen entscheidend von schnellen und zugleich genauen Simulationsmethoden ab.

Davon wiederum profitieren ganz unterschiedliche Anwendungen – von effizienten Energiespeichern, wie sie bei der Nutzung erneuerbarer Energien unverzichtbar sind, bis hin zu neuen Medikamenten, deren Entwicklung das Verständnis komplexer biologischer Vorgänge voraussetzt.

Materialsimulationen mit KI und Maschinellem Lernen voranbringen

Methoden der KI und des Maschinellen Lernens können Materialsimulationen entscheidend voranbringen. „Gegenüber herkömmlichen Simulationsmethoden, die auf klassischen oder quantenmechanischen Rechnungen basieren, lässt sich mit speziell auf Materialsimulationen zugeschnittenen neuronalen Netzen ein deutlicher Geschwindigkeitsvorteil erreichen“, erklärt der Physiker und KI-Experte Professor Pascal Friederich, Leiter der Forschungsgruppe AiMat – Artificial Intelligence for Materials Sciences am Institut für Theoretische Informatik (ITI) des KIT.

KIT entwickelt System zur vollautomatischen Überwachung von Kugelgewindetrieben

„Schnellere Simulationssysteme werden es Wissenschaftlerinnern und Wissenschaftlern in den kommenden Jahren ermöglichen, größere und komplexere Materialsysteme rein virtuell zu entwickeln, sie bis auf die atomare Ebene hinunter zu verstehen und zu optimieren“, so Friederich weiter.

Hohe Präzision vom Atom bis zum Werkstoff

In einem in der Zeitschrift Nature Materials veröffentlichten Artikel gibt Friederich, der auch als assoziierter Gruppenleiter im Bereich Nanomaterials by Information-Guided Design am Institut für Nanotechnologie (INT) des KIT tätig ist, gemeinsam mit Forschern der Universität Göttingen und der University of Toronto einen Überblick über die grundlegenden Prinzipien des für Materialsimulationen eingesetzten Maschinellen Lernens, den Datenerfassungsprozess sowie aktive Lernverfahren.

KIT-Verfahren erlaubt Produktion von besseren Elektroden für Li-Ionen-Batterien

Algorithmen für Maschinelles Lernen ermöglichen Künstlicher Intelligenz, die eingegebenen Daten nicht nur zu verarbeiten, sondern in großen Datensätzen Muster und Korrelationen zu finden, daraus zu lernen und selbstständig Vorhersagen und Entscheidungen zu treffen. Bei Materialsimulationen kommt es darauf an, eine hohe Präzision über verschiedene Zeit- und Größenskalen – vom Atom bis zum Werkstoff – zu erreichen und zugleich die Rechenkosten zu begrenzen.

In ihrem Artikel gehen die Wissenschaftler auch auf verschiedene aktuelle Anwendungen ein, wie kleine organische Moleküle und große Biomoleküle, strukturell ungeordnete feste, flüssige und gasförmige Materialien sowie komplexe kristalline Systeme – beispielsweise metallorganische Gerüstverbindungen, die sich zur Gasspeicherung oder zur Stofftrennung, für Sensoren oder für Katalysatoren einsetzen lassen.

Noch mehr Tempo mit hybriden Methoden

Um die Möglichkeiten der Materialsimulationen zukünftig noch zu erweitern, schlagen die Forschenden aus Karlsruhe, Göttingen und Toronto vor, hybride Methoden zu entwickeln: Diese verbinden Verfahren des Maschinellen Lernens (ML) und der Molekularen Mechanik (MM) miteinander.

KIT entwickelt automatisiertes Assistenzsystem

MM-Simulationen bedienen sich sogenannter Kraftfelder, um die auf jedes einzelne Teilchen wirkenden Kräfte zu berechnen und damit Bewegungsabläufe vorherzusagen. Die Ähnlichkeit der ML- und MM-Potenziale erlaubt eine enge Integration mit variablen Übergangsbereichen. Solche hybriden Methoden könnten künftig beispielsweise die Simulation großer Biomoleküle oder enzymatischer Reaktionen noch einmal deutlich beschleunigen. (bec)

Originalpublikation: Pascal Friederich, Florian Häse, Jonny Proppe & Alán Aspuru-Guzik: Machine-learned potentials for next-generation matter simulations. Nature Materials, 2021. DOI: 10.1038/s41563–020–0777–6 – zum Abstract.

Weitere Informationen zur Forschungsgruppe AiMat
Details zum KIT-Zentrum Information – Systeme – Technologien (KCIST)
Details zum KIT-Zentrum Materialien

Kontakt:
Karlsruher Institut für Technologie (KIT)
Kaiserstraße 12
76131 Karlsruhe
Tel.: +49 721 608–0
E-Mail: info@kit.edu
Website: www.kit.edu

Anzeige
Emerson: Pneumatik 4.0

Smartenance

Pneumatik 4.0 bei Emerson im Überblick

Video

Erinnern Sie sich noch an Messen in den Zeiten vor dem Auftauchen des Coronavirus? Hier ein Rückblick auf die letzte SPS in Nürnberg...

Aktuelle Ausgabe
Titelbild KEM Konstruktion Entwicklung Management 6
Ausgabe
6.2021
LESEN
ABO
Newsletter

Abonnieren Sie unseren Newsletter

Jetzt unseren Newsletter abonnieren

Kalender

Kalender

Aktuelle Termine für Konstrukteure

Webinare & Webcasts
Webinare

Technisches Wissen aus erster Hand

Whitepaper
Whitepaper

Hier finden Sie aktuelle Whitepaper

Top-Thema Spannvorrichtungen

Spannvorrichtungen

Alles über Spannvorrichtungen und welches Einsparungspotenzial sie bieten

Top-Thema Schaltschränke

Alle Infos über den Schaltschrankbau mit seinen Komponenten, Geräten und deren Verdrahtung

Anzeige
Anzeige

Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de