Startseite » Elektrotechnik »

Batterien: Forschende des KIT lösen Rätsel um Passivierungsschicht

Elektrotechnik
Forschende des KIT lösen Rätsel um Passivierungsschicht in Lithium-Ionen-Batterien

Forschende des KIT lösen Rätsel um Passivierungsschicht in Lithium-Ionen-Batterien
Forschende des KIT haben die Bildung der Feststoff-Elektrolyt-Grenzphase mit Hilfe von Simulationen charakterisiert. Bild: Collage Christine Heinrich

Lithium-Ionen-Batterien funktionieren nur mit einer Passivierungsschicht, die sich beim ersten Ladevorgang an den Elektroden bildet. Wie Forschende am Karlsruher Institut für Technologie (KIT) nun anhand von Simulationen festgestellt haben, entsteht diese Feststoff-Elektrolyt-Grenzphase nicht direkt an der Elektrode, sondern wächst aus dem Lösungsmittel. Die Erkenntnisse der Forschenden ermöglichen, Leistungsfähigkeit und Lebensdauer von zukünftigen Batterien zu optimieren.

Fast überall, wo mobile Stromversorgung gefragt ist, werden Lithium-Ionen-Batterien eingesetzt. Mit entscheidend für den zuverlässigen Betrieb dieser und anderer Flüssigelektrolyt-Batterien ist die Feststoff-Elektrolyt-Grenzphase (solid electrolyte interphase – SEI). Diese Passivierungsschicht bildet sich beim ersten Anlegen einer Spannung. Der Elektrolyt wird in der unmittelbaren Nähe der Oberfläche zersetzt. Bisher war unklar, wie die Bestandteile des Elektrolyten eine bis zu 100 Nanometer dicke und stabile Schicht an der Oberfläche der Elektroden bilden können, wenn die Zersetzungsreaktion nur innerhalb weniger Nanometer von der Oberfläche möglich ist.

Die Passivierungsschicht an der Anodenoberfläche bestimmt die elektrochemische Leistungsfähigkeit und die Lebensdauer einer Lithium-Ionen-Batterie wesentlich mit, weil sie in jedem Lade- und Entladezyklus stark beansprucht wird. Bricht die SEI dabei auf, wird der Elektrolyt weiter zersetzt und die Kapazität der Batterie nimmt stetig ab – ein Prozess, der die Lebensdauer der Batterie bestimmt. Mit dem entsprechenden Wissen über Wachstum und Zusammensetzung der SEI lassen sich Batterieeigenschaften gezielt anpassen. Bisher gelang es allerdings weder mit experimentellen noch mit computergestützten Ansätzen, diese auf ganz unterschiedlichen Größen und Längenskalen ablaufenden komplexen Wachstumsprozesse zu entschlüsseln.

Mehr als 50.000 Simulationen für verschiedene Reaktionsbedingungen

Forschende am Institut für Nanotechnologie (INT) des KIT haben es nun geschafft, die Bildung der SEI mit einem multiskaligen Ansatz zu charakterisieren. Um das Wachstum und die Zusammensetzung der Passivierungsschicht an der Anode von Flüssigelektrolyt-Batterien zu untersuchen, erzeugten die Forschenden am INT einen Satz von mehr als 50.000 Simulationen, die verschiedene Reaktionsbedingungen repräsentieren. Sie stellten fest, dass die Bildung der organischen SEI auf einem lösungsvermittelten Weg erfolgt: Zunächst schließen sich SEI-Vorläufer, die direkt an der Oberfläche gebildet werden, weit entfernt von der Elektrodenoberfläche über Keimbildung zusammen. Anschließend wachsen die Keime so schnell, dass sich eine poröse Schicht bildet, welche schließlich die Elektrodenoberfläche bedeckt. Diese Erkenntnis erklärt die paradox anmutende Situation, dass die SEI sich nur in der Nähe der Oberfläche bilden kann, wo Elektronen verfügbar sind, aber ohne den beobachteten Mechanismus sofort aufhören würde zu wachsen, wenn dieser kleine Bereich nahe der Elektrode aufgefüllt ist. „Wir haben diejenigen Reaktionsparameter identifiziert, die die Dicke der Passivierungsschicht bestimmen“, erklärt Dr. Saibal Jana, Postdoc am INT und einer der Autoren der Studie. „Dies wird es künftig ermöglichen, Elektrolyte und geeignete Zusatzstoffe zu entwickeln, um die Eigenschaften der SEI zu steuern und damit die Leistungsfähigkeit und Lebensdauer der Batterien zu verbessern.“

Die Forschungsgruppe ist an der großangelegten europäischen Forschungsinitiative Battery 2030+ beteiligt, die auf sichere, bezahlbare, langlebige und nachhaltige Hochleistungsbatterien für die Zukunft zielt. (eve)

Systems Engineering im Fokus

Ingenieure bei der Teambesprechung

Mechanik, Elektrik und Software im Griff

Video-Tipp

Unterwegs zum Thema Metaverse auf der Hannover Messe...

Aktuelle Ausgabe
Titelbild KEM Konstruktion | Automation 4
Ausgabe
4.2024
LESEN
ABO
Newsletter

Abonnieren Sie unseren Newsletter

Jetzt unseren Newsletter abonnieren

Webinare & Webcasts
Webinare

Technisches Wissen aus erster Hand

Whitepaper
Whitepaper

Hier finden Sie aktuelle Whitepaper


Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de