Startseite » Werkstoffe »

Fraunhofer IPMS und IAF zu industriell fertigbaren Quantencomputern

Materialien und Prozesse für Festkörper-Qubits
Fraunhofer IPMS und IAF zu industriell fertigbaren Quantencomputern

Die (Rechen-)Leistung von Quantencomputern hängt stark von ihrem zentralen Hardwareelement ab: dem Qubit. Es existieren mehrere Ansätze zur Realisierung von Qubits, jedoch fehlen aktuell stabile, skalierbare Fertigungsmethoden, um einen Durchbruch in der industriellen Nutzung zu erreichen. Das kürzlich gestartete Projekt Matqu zielt darauf ab, das vorhandene europäische Know-how im Bereich der Materialien und Produktionsprozesse zu erweitern.

So soll der europäischen Industrie der Weg zu festkörperbasierten Quantencomputern geebnet werden. Die beiden Fraunhofer-Institute IPMS und IAF bringen dabei ihre Expertise in der 300-mm-Fertigung und der Tieftemperaturmesstechnik ein.

Inhaltsverzeichnis
1. Projekt Matqu: Materials for Quantum Computing
2. Qubits auf dem Weg zur Marktreife
3. Verringerung der Variabilität von Qubits
4. Silizium-Qubits aus dem Labor in die industrielle Fertigung bringen
5. Tieftemperaturmesstechnik zur Untersuchung der Variabilität

Projekt Matqu: Materials for Quantum Computing

Das im Juni 2021 gestartete Projekt Matqu, kurz für Materials for Quantum Computing, will eine europäische Forschungsinfrastruktur für fortschrittliche Computing-Technologien aufzubauen. Ziel ist, durch die enge Zusammenarbeit von führenden europäischen Forschungsinstituten, Industrie und Anwendungspartnern eine europäische Lieferkette für Materialien und Prozesse für Festkörper-Qubits zu etablieren.

Mit Matqu soll ein europäisches Ökosystem geschaffen werden, um Festkörper-Qubits – wie beispielsweise supraleitende Josephson-Kontakte – in die Anwendung zu bringen. Josephson-Kontakte sind derzeit die ausgereifteste Festkörperplattform für stabile supraleitende Qubits. Schwerpunkt des Projekts sind neue Materialien sowie Prozessierungs- und Charakterisierungstechnologien für Quantencomputer-Hardware.

Qubits auf dem Weg zur Marktreife

Supraleitende Qubits gehören zu den vielversprechendsten Bauelementen, um einen Quantencomputer im großen Maßstab zu realisieren. Der Erfolg der Josephson-Kontakte kann auf ihre Designprinzipien zurückgeführt werden, die auf etablierten Produktionsprozessen beruhen. Ihre Leistungsfähigkeit hängt jedoch entscheidend von der Qualität der verwendeten Substrate und der Materialien sowie der Reproduzierbarkeit der bei der Herstellung angewandten Prozesse ab.

Eine stabile und etablierte Wertschöpfungskette ist daher der Schlüssel zur Verbesserung dieser Parameter in der Zukunft. So ist das technische Hauptziel des Projekts Matqu die Verbesserung und der Transfer von Materialien und Technologien aus den Laboren in den Markt.

Die Projektpartner verfügen über umfangreiche Infrastruktur und werden mit ihrer Expertise in den Bereichen Materialien, Prozessintegration und Forschung dazu beitragen, robuste und reproduzierbare Qubits herzustellen. Eine industrietaugliche Fabrikationsinfrastruktur wird es ermöglichen, Prozessparameter zu optimieren und die Leistung supraleitender Qubits systematisch zu verbessern.

Verringerung der Variabilität von Qubits

Qubits werden oft als eigenwillig beschrieben; zwischen ihnen wird eine große Variabilität gemessen. Um dies zu kontrollieren, sind komplexe Methoden zum „Tunen“ (Einstellen) der Qubits erforderlich. Dies wiederum erhöht die Komplexität der Quantencomputerarchitekturen im Vergleich zu traditionellen (von-Neumann)-Computern. Dies ist auch einer der Hauptgründe für die derzeitigen Skalierungsgrenzen in der Anzahl der Qubits in heutigen Quantencomputern.

Matqu zielt darauf ab, diese Variabilität zwischen den Qubit-Komponenten zu reduzieren. „Wir erwarten zwar in den nächsten 5 bis 10 Jahren nicht das gleiche Integrationsniveau wie bei klassischen Computerchips, aber wir werden sicherlich einen großen Schritt in Richtung Variabilitätsreduktion bei supraleitenden Qubits machen“, erklärt Prof. Rüdiger Quay, Projektkoordinator vom Fraunhofer IAF.

Silizium-Qubits aus dem Labor in die industrielle Fertigung bringen

Der Fokus des Fraunhofer IPMS im Projekt liegt darauf, die bestehenden Konzepte und Technologien aus dem Labor in die industrielle Fertigung zu bringen. Dabei beruft sich das Institut auf seine Expertise in der 300-mm-Fertigung, die bereits als Industriestandard für CMOS-Computing-Plattformen dient.

„Im Projekt gewinnen wir neue Einblicke in die Material- und Prozesseinflüsse für den Herstellungsprozess von supraleitenden Qubits, insbesondere im Bereich der Abscheidung, Strukturierung und der Integration von supraleitenden Schichten. Durch neuartige Herstellungsprozesse und die Erprobung bei kryogenen Temperaturen wollen wir so die Fertigung von Bauelementen für das Quantencomputing auf europäischer Ebene voranbringen“, erläutert Dr. Benjamin Lilienthal-Uhlig, Geschäftsfeldleiter Next Generation Computing am Fraunhofer IPMS.

„Ein zweiter Schwerpunkt ist für uns, gemeinsam mit Industrie- und Forschungspartnern europäischen Mittelständlern und Start-ups Zugang zu modernen Fertigungsanlagen und Know-how zu verschaffen, um die Reife der supraleitenden Qubit-Technologie deutlich zu steigern und das europäische Ökosystem der Quantentechnologie zu stärken“, sagt Lilienthal-Uhlig abschließend.

Tieftemperaturmesstechnik zur Untersuchung der Variabilität

In dem Projekt Matqu bringt das Fraunhofer IAF seine Erfahrungen und Kenntnisse auf dem Gebiet der Tieftemperaturmesstechnik ein, insbesondere zur Untersuchung der Variabilität von supraleitenden Schichten. Das Freiburger Institut besitzt umfangreiche Geräte zur Charakterisierung von kryogenen Bauelemente, wie sie im Quantencomputing zum Einsatz kommen.

Damit erhalten europäische Unternehmen, insbesondere KMUs und Start-ups, neben dem notwendigen Know-how auch Zugang zu modernen Test- und Charakterisierungsgeräten und somit zu Schlüsselkomponenten für die Entwicklung von Quantencomputer-Hardware. (bec)

Kontakt:
Fraunhofer-Institut für Photonische Mikrosysteme IPMS
Maria-Reiche-Straße 2
01109 Dresden
Tel.: +49 351 8823–0
E-Mail: info@ipms.fraunhofer.de
Website: www.ipms.fraunhofer.de

Fraunhofer-Institut für Angewandte Festkörperphysik IAF
Tullastraße 72
79108 Freiburg
Tel.: +49 761 5159–0
E-Mail: info@iaf.fraunhofer.de
Website: www.iaf.fraunhofer.de

Unsere Whitepaper-Empfehlung
Systems Engineering im Fokus

Ingenieure bei der Teambesprechung

Mechanik, Elektrik und Software im Griff

Video-Tipp

Unterwegs zum Thema Metaverse auf der Hannover Messe...

Aktuelle Ausgabe
Titelbild KEM Konstruktion | Automation 4
Ausgabe
4.2024
LESEN
ABO
Newsletter

Abonnieren Sie unseren Newsletter

Jetzt unseren Newsletter abonnieren

Webinare & Webcasts
Webinare

Technisches Wissen aus erster Hand

Whitepaper
Whitepaper

Hier finden Sie aktuelle Whitepaper


Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de