Startseite » Werkstoffe »

Fotostrukturierbare Dickschichtpasten vom Fraunhofer IKTS

Hochaufgelöste Dickschichtstrukturen für 5G-Anwendungen
Fotostrukturierbare Dickschichtpasten vom Fraunhofer IKTS

Die Miniaturisierung ist seit Jahren Hauptentwicklungstreiber in der Elektronik. Dies gilt uneingeschränkt auch für keramikbasierte Schaltungsträger, die sich etwa durch ihre hervorragende Eignung für Hochfrequenzschaltungen auszeichnen. Die klassische Dickschichttechnik zur Herstellung der benötigten Leiterzüge stößt bei steigenden Anforderungen jedoch an ihre Grenzen. Eine neue Generation fotostrukturierbarer Dickschichtpasten des Fraunhofer IKTS ermöglicht nun die Herstellung extrem hochaufgelöster Dickschichtstrukturen, die für 5G-Anwendungen erforderlich sind: massen- und industrietauglich, mit geringen Investitionskosten und kaum höherer Produktionszeit.

Dr. Janine van Ackeren, Wissenschaftsjournalistin, Duisburg, i. A. des Fraunhofer IKTS, Dresden

Inhaltsverzeichnis

1. Strukturen mit einer Auflösung von nur 20 µm
2. PI für Pasten – lediglich 15 bis 30 s zusätzlich
3. PI-Dickschichtpasten für Anwender sind verfügbar
4. Produktionsanlagen sind in der Entwicklung
5. Kompetenz in Keramik

 

Der nächste Standard des mobilen Internets und der Mobiltelefonie steht an: 5G, kurz für fifth generation. Südkorea, die Schweiz und einige US-amerikanische Städte nutzen 5G bereits, in Deutschland wurden die Lizenzen im Juni 2019 versteigert. Der neue Standard heißt allerdings auch: Die notwendige Elektronik für das Senden und Empfangen der Signale benötigt deutlich feinere Strukturen als bisher.

Dies gilt auch für die zugehörigen Antennen, die im ersten Schritt bei 3,6 GHz, später bei höheren Frequenzen arbeiten werden. Die bisher genutzte Dickschichttechnik hat in puncto Miniaturisierung jedoch ihre Grenze erreicht: Bei einer Auflösung von etwa 50 µm ist heute Schluss – zumindest was die industrielle Umsetzung anbelangt. Das bedeutet: Die einzelnen elektrischen Strukturen wie Leiterbahnen sind minimal 50 µm breit. Für 5G sind jedoch 20 µm oder feinere Strukturen notwendig.

Strukturen mit einer Auflösung von nur 20 µm

Forschende des Fraunhofer-Instituts für Keramische Technologien und Systeme IKTS in Dresden konnten diese Herausforderung nun in Kooperation mit der britischen Firma Mozaik lösen. Hierzu wurde bereits im Juni 2019 eine Lizenzvereinbarung unterzeichnet. „Wir können Leiterbahnen mit einer Strukturauflösung von 20 µm und kleiner herstellen“, sagt Dr. Kathrin Reinhardt, Wissenschaftlerin am Fraunhofer IKTS. „Das Verfahren ist massen- und industrietauglich, die Investitionskosten sind gering.“

Als Basis wird dabei die bisherige Siebdrucktechnologie verwendet – so können die Anwender ihre Anlagen weiterhin wie gewohnt nutzen. Das Prinzip des Siebdrucks: Man positioniert ein Sieb mit der gewünschten Druckstruktur über einem Substrat, appliziert die Dickschichtpaste durch die Sieböffnungen und überträgt so die gewünschte Druckstruktur. Danach wird die abgeschiedene Schicht getrocknet und anschließend bei hohen Temperaturen gesintert, wobei die finalen funktionellen Schichteigenschaften erzeugt werden. Da die für die Siebe verwendeten Edelstahldrähte jedoch nicht beliebig dünn hergestellt werden können, hat der Siebdruck in puncto Strukturauflösung und -qualität bei 50 µm sein Limit erreicht.

PI für Pasten – lediglich 15 bis 30 s zusätzlich

Die sogenannte PI-Technologie (Photo-Imgaging) fügt diesem Standardverfahren nun noch zwei Schritte hinzu. „Nachdem die Dickschichtstrukturen auf dem Substrat getrocknet sind, positionieren wir eine Fotomaske mit der gewünschten Endstruktur über dem Substrat“, erläutert Reinhardt. „Dann belichten wir das Ganze mit UV-Strahlung: Dort, wo die Fotomaske Strukturöffnungen aufweist, dringt das UV-Licht in die Schicht ein und härtet das darin enthaltene Polymer aus. An den Stellen jedoch, an denen die Maske die Schicht verdeckt, bleiben die Polymere unvernetzt.“

Nun folgt der zweite zusätzliche Schritt: Ein nasschemischer Entwicklungsprozess auf wässriger Basis. Dieser entfernt die Bereiche der Schicht, deren Polymere nicht vernetzt sind – sprich, die von der Maske bedeckt waren. An allen anderen Stellen bleibt die Dickschicht haften. Das heißt: Die zuvor 50 µm breiten Strukturen lassen sich durch diesen Prozess auf die gewünschten 20 µm reduzieren, die Endstruktur wird dabei durch die Fotomaske vorgegeben. Nun geht es zurück zum gewohnten Ablauf, in dem das Substrat gesintert wird. Zwar klingt all das recht aufwendig – doch der Schein trügt: „Die beiden Verfahren nehmen jeweils lediglich 15 bis 30 Sekunden in Anspruch und lassen sich daher problemlos in die Fertigung integrieren“, weiß Reinhardt.

PI-Dickschichtpasten für Anwender sind verfügbar

Für das Funktionieren der PI-Technologie sind maßgeschneiderte Dickschichtpasten notwendig: Diese sind so zusammengesetzt, dass sie unter der UV-Beleuchtung zuverlässig aushärten, jedoch von Tageslicht unbeeinflusst bleiben. Ein kostspieliger Gelb-Raum ist daher nicht nötig. Das PI-Know-how besteht in der präzisen Abstimmung der Bestandteile der Pasten. Diese sind im Falle von Metallisierungspasten: pulverförmiges Metall (Silber, Gold oder Legierungen), aus dem die späteren Strukturen bestehen sollen, das UV-vernetzende Polymer sowie andere Additive.

Ist zu viel Metall in der Paste, vernetzt die Schicht unter dem UV-Licht nicht ausreichend – in diesem Fall würde die Schicht beim Entwicklungsprozess vom Substrat gespült. Ist dagegen zu viel Polymer vorhanden, sind die erzeugten Metallstrukturen porös und können ihre Funktion nicht erfüllen. „Wir mussten bei der Entwicklung der Pasten also zwei Parameter mehr berücksichtigen als üblich: Nicht nur die Funktionalität, sondern auch die Schritte der Belichtung und Entwicklung“, sagt Reinhardt. Bei den Pasten für Silber und Gold ist dies den Pastenentwicklern bereits gelungen. Derzeit arbeiten sie an Platin- und Widerstandspasten.

Produktionsanlagen sind in der Entwicklung

Die Firma Aurel S.p.A., Modigliana, Italien, entwickelt bereits entsprechende Produktionsanlagen, die exakt auf die PI-Pasten aus dem Fraunhofer IKTS abgestimmt sind. „Die vielversprechende Technologie ist als kostengünstige, einfache Integration in Standard-Dickschichtverfahren gedacht, in denen Aurel mehr als 50 Jahre Erfahrung verfügt. Daher entschieden wir uns dafür, Hochleistungsgeräte (LED-Belichtung und Sprühstrahlanlagen) für die Klein- und Großserienfertigung auf den Markt zu bringen. Die Aurel-Anlagen können als eigenständige Einheiten oder Module konzipiert werden, die in eine vollautomatische Linie integriert werden und dabei die typischen Taktzeiten einer Standard-Dickschichtfertigungslinie erreichen können. Feine Linien und kombinierte Strukturen sind eine kostengünstige Alternative für Dünnschicht- und Festkörper-Designs mit Anwendungen wie HF- und Mikrowellenmodulen, Sensoren, Chipkomponenten, 3D-Stapelinterposer und Fan-Out-Substraten“, sagt Fabio Pagnotta, Sales and Marketing Manager der Firma Aurel. bec

Detaillierte Informationen zu Dickschichttechnik und Funktionellem Druck:
hier.pro/aVS95

Kontakt:
Fraunhofer-Institut für Keramische Technologien und Systeme IKTS
Winterbergstraße 28
01277 Dresden
Tel.: 0351 2553–7700
E-Mail: info@ikts.fraunhofer.de
Website: www.ikts.fraunhofer.de
Institutsleiter: Prof. Dr. Alexander Michaelis

Kontakt:
Aurel S.p.A.
Via Foro dei Tigli 4
47015 Modigliana (FC)
Italien
Tel.: +39 0546 941124
E-Mail: automation@aurel.it
Website: www.aurelautomation.com


PLUS

Kompetenz in Keramik

Das Fraunhofer-Institut für Keramische Technologien und Systeme IKTS betreibt anwendungsorientierte Forschung für Hochleistungskeramik. Die drei Institutsteile in Dresden und Hermsdorf (Thüringen) bilden gemeinsam das wohl größte Keramikforschungsinstitut Europas. Als Forschungs- und Technologiedienstleister entwickelt das Fraunhofer IKTS moderne keramische Hochleistungswerkstoffe, industrierelevante Herstellungsverfahren sowie prototypische Bauteile und Systeme in vollständigen Fertigungslinien bis in den Pilotmaßstab. Darüber hinaus umfasst das Forschungsportfolio die Kompetenzen Werkstoffdiagnose und -prüfung. Die Prüfverfahren aus den Bereichen Akustik, Elektromagnetik, Optik und Mikroskopie tragen maßgeblich zur Qualitätssicherung von Produkten und Anlagen bei.


„Wir können Leiterbahnen mit einer Strukturauflösung von 20 µm und kleiner herstellen.“

Unsere Whitepaper-Empfehlung
Systems Engineering im Fokus

Ingenieure bei der Teambesprechung

Mechanik, Elektrik und Software im Griff

Video-Tipp

Unterwegs zum Thema Metaverse auf der Hannover Messe...

Aktuelle Ausgabe
Titelbild KEM Konstruktion | Automation 3
Ausgabe
3.2024
LESEN
ABO
Newsletter

Abonnieren Sie unseren Newsletter

Jetzt unseren Newsletter abonnieren

Webinare & Webcasts
Webinare

Technisches Wissen aus erster Hand

Whitepaper
Whitepaper

Hier finden Sie aktuelle Whitepaper


Industrie.de Infoservice
Vielen Dank für Ihre Bestellung!
Sie erhalten in Kürze eine Bestätigung per E-Mail.
Von Ihnen ausgesucht:
Weitere Informationen gewünscht?
Einfach neue Dokumente auswählen
und zuletzt Adresse eingeben.
Wie funktioniert der Industrie.de Infoservice?
Zur Hilfeseite »
Ihre Adresse:














Die Konradin Verlag Robert Kohlhammer GmbH erhebt, verarbeitet und nutzt die Daten, die der Nutzer bei der Registrierung zum Industrie.de Infoservice freiwillig zur Verfügung stellt, zum Zwecke der Erfüllung dieses Nutzungsverhältnisses. Der Nutzer erhält damit Zugang zu den Dokumenten des Industrie.de Infoservice.
AGB
datenschutz-online@konradin.de